Telegram Group & Telegram Channel
Как параметризовать алгоритм обучения?

По всей видимости, мне нужно более понятно раскрыть эту тему, поскольку один из постов выше не вызвал никакого обсуждения, хотя, мне кажется, тема-то очень важная и интересная.

Итак, представим, что у нас есть система, обучающаяся чему-либо, например, классификации картинок. Чтобы оптимизировать обучаемость системы, нам нужно какое-то пространство для оптимизации, в котором мы будем изменять наши параметры в поиске лучшего алгоритма.

Самый известный способ параметризовать такой алгоритм - это программа на питоне, задающая архитектуру нейросети, трейнлуп, подсчёт ошибки и так далее. Оптимизацию в этом пространстве проводит человек почти вручную в рамках технологического прогресса. У этого есть 2 минуса:
1) Человечество - не самый лучший оптимизатор. Представьте, как если бы оно пыталось написать программу на питоне, которая берёт картинку и классифицирует по классам кошка/собака, без нейросетей.
2) Пространство "параметров" слишком структурировано. Человеческий интеллект задаёт ограничение на пространство алгоритмов, и то, что алгоритм состоит из длинной последовательности дискретных инструкций, в которой почти любая ошибка приводит к полной катастрофе, сильно затрудняет нам его оптимизацию автоматическими алгоритмами (например, генетическими). Иногда удаётся оптимизировать короткие программы, используя безумные ресурсы, как, например, в AutoMLZero, про который я писал пост.

Альтернативный способ параметризовать обучение системы - это, конечно же, ДНК. В нём закодировано поведение элементарной частицы, её деление, взаимодействие со своими копиями. Тот факт, что каждый кусочек ДНК влияет в разной степени на всю систему, не обязательно вызывая полный крах, и позволил эволюции оптимизировать адаптируемость человека к внешним вызовам, т.е. в том числе интеллект.

Как же я был приятно удивлён, когда обнаружил, что я не одинок в этих рассуждениях! Я нашёл статью, в которой авторы полностью переизобретают нейросети, не побоюсь этой фразы, и реально достигают успеха в мета-обучении. Об этом в следующем посте.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/82
Create:
Last Update:

Как параметризовать алгоритм обучения?

По всей видимости, мне нужно более понятно раскрыть эту тему, поскольку один из постов выше не вызвал никакого обсуждения, хотя, мне кажется, тема-то очень важная и интересная.

Итак, представим, что у нас есть система, обучающаяся чему-либо, например, классификации картинок. Чтобы оптимизировать обучаемость системы, нам нужно какое-то пространство для оптимизации, в котором мы будем изменять наши параметры в поиске лучшего алгоритма.

Самый известный способ параметризовать такой алгоритм - это программа на питоне, задающая архитектуру нейросети, трейнлуп, подсчёт ошибки и так далее. Оптимизацию в этом пространстве проводит человек почти вручную в рамках технологического прогресса. У этого есть 2 минуса:
1) Человечество - не самый лучший оптимизатор. Представьте, как если бы оно пыталось написать программу на питоне, которая берёт картинку и классифицирует по классам кошка/собака, без нейросетей.
2) Пространство "параметров" слишком структурировано. Человеческий интеллект задаёт ограничение на пространство алгоритмов, и то, что алгоритм состоит из длинной последовательности дискретных инструкций, в которой почти любая ошибка приводит к полной катастрофе, сильно затрудняет нам его оптимизацию автоматическими алгоритмами (например, генетическими). Иногда удаётся оптимизировать короткие программы, используя безумные ресурсы, как, например, в AutoMLZero, про который я писал пост.

Альтернативный способ параметризовать обучение системы - это, конечно же, ДНК. В нём закодировано поведение элементарной частицы, её деление, взаимодействие со своими копиями. Тот факт, что каждый кусочек ДНК влияет в разной степени на всю систему, не обязательно вызывая полный крах, и позволил эволюции оптимизировать адаптируемость человека к внешним вызовам, т.е. в том числе интеллект.

Как же я был приятно удивлён, когда обнаружил, что я не одинок в этих рассуждениях! Я нашёл статью, в которой авторы полностью переизобретают нейросети, не побоюсь этой фразы, и реально достигают успеха в мета-обучении. Об этом в следующем посте.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/82

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

Knowledge Accumulator from fr


Telegram Knowledge Accumulator
FROM USA